

Proyecto "Garnachas Históricas: Grupo de cooperación para la conservación de garnachas históricas de la Denominación de Origen Protegida Campo de Borja".

Informe de trabajo realizado por Laboratorio de Análisis del Aroma y Enología (LAAE). Vendimia 2023.

Actividad 1: "Verificar la especificidad del aroma potencial de la uva de los viñedos históricos".

Tras el trabajo realizado en la campaña 2022, se continúa la colaboración entre el LAAE y el Consejo Regulador DO Campo de Borja, con los mismos objetivos de trabajo.

Tan sólo se introducen un par de cambios en la estructura de trabajo:

- Durante la vendimia 2023 es el Consejo Regulador DO Campo de Borja quien se ocupa de la preparación de las mistelas de las muestras, según protocolo entregado por el LAAE.
- Además, se analizarán las muestras según <u>un procedimiento nuevo</u> desarrollado en el LAAE, menos costoso, pero igualmente contrastado, limitando los análisis a los compuestos traza y no repitiendo el análisis de tioles varietales que sí se realizó en la vendimia pasada.

Definición del trabajo:

Sobre las mistelas preparadas y enviadas por el Consejo Regulador DO Campo de Borja, se realizarán las tareas de generación, aislamiento, identificación y cuantificación de los aromas presentes en dichas mistelas bajo forma de precursores.

Las parcelas muestreadas serán las mismas que las muestreadas la vendimia pasada. Se analizarán los datos, tal y como se realizó el año anterior, enfrentando y comparando los datos de las parcelas consideradas "testigo" con las consideradas "históricas".

Tareas realizadas:

Muestras.

Adjunto se presenta, en forma de tabla, un resumen de las muestras recibidas en el LAAE y sus características. (**Tabla 1**)

Tratamiento de las muestras.

Partiendo de las "mistelas" enviadas, en el LAAE el desarrollo del trabajo con las muestras fue la hidrólisis por calentamiento en anoxia para analizar el potencial aromático que pueden desarrollar, propiciando la generación de los aromas presentes en estas muestras bajo forma de precursores.

Para ello se prepararon en viales y embolsaron en anoxia, alícuotas de cada una de las muestras y se sometieron al proceso de hidrolisis almacenándose en una a estufa a 75 °C durante 48 horas (para analizar el potencial aromático que presentaban de terpenos, norisoprenoides, vainillina y derivados, fenoles y otros)

Tabla1. Muestras CRDO Campo de Borja.

						INFOR	MACIÓN CF	RDO CB				
CODIGO LAAE	muestra	descripción	Provincia	Municipio	Variedad	Año	Edad	Superficie	Marvf	Marvp	V/E	S/R
B1	7 GH Ainzón	Histórica	50-Zaragoza	6-AINZON	1 - GARNACHA TINTA	1980	43	1,6298	2,1	2,1	V	S
В2	8 GT Ainzón	Testigo	50-Zaragoza	6-AINZON	1 - GARNACHA TINTA	2016	7	3,6873	3	1,5	V	S
В3	2 GT Magallón	Testigo	50-Zaragoza	154-MAGALLON	1 - GARNACHA TINTA	2011	12	0,8021	3	1,2	E	R
В4	1 GH Magallón	Histórica	50-Zaragoza	154-MAGALLON	1 - GARNACHA TINTA	1940	83	0,3559	2,1	2,1	V	S
В5	5 GH Fuendejalón	Histórica	50-Zaragoza	114-FUENDEJALON	1 - GARNACHA TINTA	1975	48	0,4362	2	2	V	S
В6	6 GT Fuendejalón	Testigo	50-Zaragoza	114-FUENDEJALON	1 - GARNACHA TINTA	2013	10	1,1428	3,2	1,4	E	S
В7	4 GT Pozuelo	Testigo	50-Zaragoza	114-FUENDEJALON	1 - GARNACHA TINTA	2017	6	0,5835	3,2	1,5	E	S
В8	3 GH Pozuelo	Histórica	50-Zaragoza	114-FUENDEJALON	1 - GARNACHA TINTA	1990	33	1,0236	2,1	2,1	V	S
В9	9 GH Borja	Histórica	50-Zaragoza	55-BORJA	1 - GARNACHA TINTA	1970	53	2,0398	2	2	V	S
B10	10 GT Borja	Testigo	50-Zaragoza	55-BORJA	1 - GARNACHA TINTA	2016	7	1,0594	3	1	E	S
B11	12 GT Tabuenca	Testigo	50-Zaragoza	252-TABUENCA	1 - GARNACHA TINTA	2019	4	2,1725	3	1,5	E	S
B12	11 GH Tabuenca	Histórica	50-Zaragoza	252-TABUENCA	1 - GARNACHA TINTA	1980	43	0,9101	2,1	2,1	V	S

Determinaciones realizadas y resultados.

Una vez terminados los procesos de hidrólisis se procedió al análisis de las mismas. Este año únicamente se analizaron las compuestos volátiles trazas y no se analizaron los tioles varietales Todos los análisis se realizaron por duplicado.

Se siguieron los protocolos establecidos en el LAAE para la determinación de compuestos traza (mayoritariamente terpenos, norisoprenoides y fenoles) - Oliveira et al., [2] .

Los resultados se presentan a continuación en forma de tabla (Tabla2).

[2] Oliveira, I.; Ferreira, V. Modulating Fermentative, Varietal and Aging Aromas of Wine Using Non-Saccharomyces Yeasts in a Sequential Inoculation Approach. Microorganisms 2019, 7 (6), 164. DOI: 10.3390/microorganisms7060164.

Tabla2. Contenido en volátiles trazas (expresados en ug/l, excepto los indicados como áreas relativas).

	CODIGO LAAE	R-limonene	1,8-Cineole	Linalool oxide (isomeros juntos)	Dihydromyr enol	Vitispirane A and B (area relativa)		Riesling Acetal (area relativa)	a-Terpineol	TDN	b-Citronellol	Nerol	b- Damascenor	b-Phenylethyl acetate	Geraniol	Guaiacol	b-lonone	g-Octalactone	o-Cresol	g- Nonalactone	m-Cresol	Ethyl cinnamate	g- Decalactone	Eugenol	Ethylphenol	4- Vinylguaicol	Massoia lactone	Syringol	trans- Isoeugenol	4-Vinylphenol	Methoxyeugenol	Vanillin	Acetovanillone	Syringaldehyde
H H_Ainzón	B1_rep1	4,35	0,27	3,56	0,47	0,23	6,65	0,20	14,8	7,24	1,96	0,94	5,32	1,02	5,68	12,0	0,15	0,83	0,85	1,55	0,35	0,81	0,45	0,21	0,40	3896	10,0	63,1	0,56	238	2,51	98,1	34,1	132
H H_Ainzón	B1_rep2	4,71	0,24	3,61	0,39	0,39	8,32	0,25	18,7	10,8	2,56	1,18	9,72	1,88	6,71	10,0	0,16	0,29	0,83	1,04	0,33	1,26	0,23	0,16	0,35	3772	9,86	62,9	0,43	256	1,81	75,2	34,6	96,2
T T_Ainzón	B2_rep1	6,59	0,36	5,58	0,59	0,34	30,9	0,27	40,8	7,41	3,40	4,20	7,65	1,60	24,8	12,2	0,18	0,95	1,11	1,34	0,20	1,18	0,41	0,13	0,18	2785	17,8	100	0,27	208	0,74	88,0	26,0	125
T T_Ainzón	B2_rep2	6,71	0,34	5,32	0,55	0,23	27,3	0,22	35,1	5,16	2,82	3,91	4,97	1,23	21,9	13,3	0,16	0,56	1,22	1,06	0,20	0,96	0,42	0,15	0,17	2484	16,8	85,6	0,37	175	0,81	83,4	23,7	72,6
T T_Magallón	B3_rep1	33,8	0,94	1,22	2,16	0,04	8,57	0,05	3,89	0,99	3,16	1,38	13,3	2,76	13,8	14,4	0,52	0,33	0,98	1,50	0,37	1,90	0,24	0,15	0,73	4138	10,6	113	0,76	379	4,33	72,8	24,8	83,2
T T_Magallón	B3_rep2	29,0	0,90	1,34	2,01	0,03	6,50	0,04	4,50	0,76	2,17	1,12	9,92	2,05	10,5	17,0	0,46	1,25	0,95	2,37	0,34	1,31	0,51	0,15	0,69	4416	10,7	123	0,82	398	4,63	171	34,3	282
H H_Magallón	B4_rep1	24,1	0,58	1,41	1,33	0,09	6,59	0,09	3,95	1,87	2,68	1,59	11,8	2,84	8,9	28,9	0,35	0,44	0,85	2,98	0,44	3,42	0,49	0,23	0,28	11127	37,5	160	0,70	764	17,2	268	49,1	411
H H_Magallón	B4_rep2	35,4	0,84	1,51	2,00	0,09	7,33	0,10	4,14	2,11	2,92	1,68	12,8	2,48	9,61	29,7	0,47	0,48	0,95	3,09	0,49	3,46	0,43	0,21	0,26	11327	38,2	167	0,70	791	15,9	243	47,3	345
H H_Fuendejalón	B5_rep1	28,0	0,61	1,85	1,32	0,14	18,6	0,13	12,4	2,80	3,29	2,60	9,95	1,98	16,0	17,3	0,34	0,33	0,66	2,02	0,31	4,56	0,29	0,19	0,29	3612	10,8	122	0,28	352	6,29	211	40,5	214
H H_Fuendejalón	B5_rep2	34,0	0,72	1,95	1,68	0,14	19,5	0,13	12,3	3,08	3,72	2,66	10,4	2,28	18,7	16,7	0,42	0,33	0,67	2,05	0,33	4,71	0,31	0,24	0,29	3956	10,9	129	0,33	341	7,07	152	37,8	181
T T_Fuendejalón	B6_rep1	45,9	1,14	2,56	2,59	0,18	26,4	0,17	15,3	3,49	4,36	3,84	12,4	2,76	24,3	14,3	0,59	0,31	0,77	1,28	0,25	4,00	0,30	0,17	0,17	3485	6,83	189	0,29	360	1,62	208	33,6	359
T T_Fuendejalón	B6_rep2	52,4	1,28	2,71	3,02	0,18	26,4	0,17	15,3	3,75	4,41	3,92	12,5	2,72	23,9	13,7	0,65	0,36	0,82	1,33	0,27	4,11	0,32	0,16	0,18	3427	6,97	189	0,26	359	1,51	213	34,4	352
T T_Pozuelo	B7_rep1	33,2	1,10	3,83	3,51	0,28	19,6	0,23	19,7	6,74	3,37	2,61	10,3	2,67	14,7	7,20	0,93	0,46	0,57	1,83	0,32	2,87	0,39	0,22	0,30	6098	26,8	58,8	0,54	642	4,66	81,7	22,4	96,7
T T_Pozuelo	B7_rep2	29,7	0,88	3,74	2,83	0,18	14,1	0,19	16,3	4,66	2,45	2,18	6,75	1,77	11,5	7,41	0,75	1,09	0,60	2,26	0,35	1,90	0,63	0,17	0,25	5418	24,8	54,6	0,49	620	3,35	107	25,4	135
H H_Pozuelo	B8_rep1	23,2	0,95	1,83	2,84	0,14	7,44	0,14	4,20	3,21	2,81	0,89	11,7	2,70	6,77	19,5	0,74	0,54	0,85	3,93	0,51	5,21	0,48	0,29	0,46	15151	30,0	118	0,63	1163	22,7	164	45,6	184
H H_Pozuelo	B8_rep2	13,9	0,88	1,90	2,63	0,10	6,56	0,12	4,66	2,42	2,39	0,91	8,77	2,45	6,09	22,4	0,62	0,97	0,85	4,24	0,52	3,84	0,63	0,30	0,44	15720	29,6	126	0,65	1178	23,3	399	57,5	373
H H_Borja	B9_rep1	370	0,98	2,29	1,63	0,15	12,3	0,11	11,6	2,95	3,35	1,92	10,2	1,75	11,9	12,1	0,51	0,89	0,85	2,71	0,32	2,11	0,36	0,21	0,23	3110	9,73	122	0,35	286	4,29	79,3	16,8	77,4
H H_Borja	B9_rep2	455	1,14	2,57	2,37	0,14	11,3	0,12	12,4	2,83	3,12	1,74	9,95	2,10	11,2	12,8	0,67	1,68	0,86	3,58	0,36	1,95	0,60	0,17	0,23	2988	10,1	136	0,29	292	4,32	124	22,8	181
T T_Borja	B10_rep1	446	0,96	4,51	1,70	0,89	7,75	0,49	14,2	18,6	1,37	1,04	18,6	4,03	5,71	6,67	0,58	0,39	0,65	2,09	0,19	2,38	0,38	0,11	0,15	2187	15,6	88,6	0,22	133	2,02	85,2	12,2	139
T T_Borja	B10_rep2	399	0,92	5,01	1,67	0,83	7,60	0,49	14,0	18,3	1,43	0,95	18,1	4,15	5,98	8,66	0,59	0,50	0,72	2,26	0,20	2,29	0,44	0,16	0,17	2325	15,7	108	0,31	127	2,60	153	18,6	295
T T_Tabuenca	B11_rep1	469	1,14	6,85	2,38	0,42	17,3	0,41	23,4	9,48	2,69	2,52	12,1	3,19	13,8	8,68	0,75	1,38	0,76	5,67	0,28	1,98	0,72	0,19	0,23	4117	41,1	90,3	0,29	274	2,58	140	29,9	177
T T_Tabuenca	B11_rep2	538	1,26	7,12	2,71	0,38	15,8	0,40	22,2	8,90	2,52	2,47	10,5	2,15	13,0	9,08	0,82	1,89	0,82	6,24	0,32	1,77	0,88	0,21	0,23	4477	42,2	95,4	0,33	284	2,41	170	31,3	205
H H_Tabuenca	B12_rep1	411	1,12	3,56	2,05	0,14	13,0	0,18	10,7	3,09	3,02	1,96	17,6	3,92	14,0	18,7	0,82	1,45	0,93	6,40	0,39	1,83	0,79	0,35	0,23	4803	62,8	135,4	0,71	260	8,87	429	48,4	468
H H_Tabuenca	B12_rep2	413	1,07	3,13	2,13	0,17	14,7	0,19	11,2	3,50	3,36	2,17	19,6	4,03	13,8	18,0	0,78	0,90	0,92	5,72	0,36	2,04	0,57	0,32	0,22	4908	59,7	129,8	0,65	277	8,56	321	44,6	365

<DL: valores por debajo del límite de detección el método

Tratamientos de datos

Para el tratamiento de los datos, al igual que en la vendimia pasada, se procede a la realización de la *prueba t de Student*, prueba estadística que se utiliza para comparar las medias de dos grupos y poder comprobar si son estadísticamente diferentes. Lo haremos mediante la obtención del *valor p (valor de probabilidad)* que se interpreta como la probabilidad de obtener una diferencia distinta de cero sin más diferencias que las puramente aleatorias. Es un valor estadístico entre 0 y 1. Cuanto más bajo sea p más probabilidades hay de que la diferencia encontrada entre las medias sea debida a un comportamiento o diferencia real y no debido a la casualidad o variabilidad entre las muestras. Normalmente un valor p < 0.05 se toma como nivel de significatividad suficiente para considerar dos muestras estadísticamente diferentes.

Calculamos el valor medio de los dos análisis realizados a cada una de las muestras de cada una de las parcelas en cada uno de los compuestos analizados (**Tabla 3**)

Después se calcula el valor medio por compuesto de todas las concentraciones de las parcelas consideradas históricas y las consideradas testigo y se indica la diferencia entre las mismas, [Histórica-Testigo]. Con estos valores y sus correspondientes desviaciones estándar (SD) es con lo que se calculan los valores t y p. (**Tabla 4**) Se han marcado en rojo con fondo rojo los valores de p<0,05, las diferencias significativas.

Igualmente, para ilustrar de forma más gráfica las diferencias, se muestran en escala de color las variaciones en % de diferencia sobre el valor de la media. Desde rojo (valores superiores en parcelas Históricas) hasta el verde (valores inferiores en parcelas Históricas).

Además, para completar el estudio, incluimos los resultados de este mismo tratamiento con los datos de la vendimia pasada (**Tabla 5**).

Es importante indicar en este punto la diferencia en el tratamiento y estudio de las muestras entre vendimias: el año 2022 se trabajó con fracciones polifenólicas y precursoras de aromas (FFA's) de las mistelas obtenidas y en el año 2023 directamente con las mistelas, pero el proceso de estudio posterior hidrolizando unas y otras y el análisis de volátiles trazas se realizó de manera similar. No se puede hacer una comparación directa de valores absolutos entre ambos estudios, además también por la variabilidad natural que existe entre cosechas, pero sí nos sirve para la comparación relativa entre parcelas "históricas" y "testigos".

Tabla3. Valores medios por parcela del contenido en volátiles trazas (expresados en ug/l o áreas relativas)

	T Ainzón	H Ainzón	T_Magallón	H_Magallón	T_Fuendejalón	H_Fuendejalón	T_Pozuelo	H_Pozuelo	T_Borja	H_Borja	T_Tabuenca	H_Tabuenca
R-limonene	6,65	4,53	31,4	29,8	49,1	31,0	31,4	18,6	422	413	503	412
1,8-Cineole	0,35	0,26	0,92	0,71	1,21	0,66	0,99	0,91	0,94	1,06	1,20	1,10
Linalool oxide (isomeros juntos)	5,45	3,59	1,28	1,46	2,63	1,90	3,79	1,86	4,76	2,43	6,98	3,35
Dihydromyrcenol	0,57	0,43	2,08	1,67	2,80	1,50	3,17	2,73	1,69	2,00	2,54	2,09
Vitispirane A and B (area relativa)	0,29	0,31	0,03	0,09	0,18	0,14	0,23	0,12	0,86	0,14	0,40	0,15
Linalool	29,1	7,49	7,54	6,96	26,4	19,1	16,8	7,00	7,67	11,8	16,5	13,9
Riesling Acetal (area relativa)	0,24	0,22	0,05	0,10	0,17	0,13	0,21	0,13	0,49	0,12	0,41	0,19
a-Terpineol	38,0	16,7	4,20	4,04	15,3	12,4	18,0	4,43	14,1	12,0	22,8	11,0
TDN	6,28	9,02	0,87	1,99	3,62	2,94	5,70	2,82	18,5	2,89	9,19	3,30
b-Citronellol	3,11	2,26	2,66	2,80	4,38	3,51	2,91	2,60	1,40	3,24	2,61	3,19
Nerol	4,05	1,06	1,25	1,63	3,88	2,63	2,40	0,90	0,99	1,83	2,49	2,07
b-Damascenone	6,31	7,52	11,6	12,3	12,5	10,2	8,51	10,2	18,4	10,1	11,3	18,6
b-Phenylethyl acetate	1,42	1,45	2,40	2,66	2,74	2,13	2,22	2,57	4,09	1,93	2,67	3,97
Geraniol	23,3	6,19	12,1	9,27	24,1	17,3	13,1	6,43	5,85	11,6	13,4	13,9
Guaiacol	12,7	11,0	15,7	29,3	14,0	17,0	7,30	21,0	7,67	12,4	8,88	18,4
b-lonone	0,17	0,15	0,49	0,41	0,62	0,38	0,84	0,68	0,59	0,59	0,78	0,80
g-Octalactone	0,76	0,56	0,79	0,46	0,34	0,33	0,78	0,76	0,45	1,29	1,64	1,17
o-Cresol	1,16	0,84	0,96	0,90	0,80	0,67	0,59	0,85	0,68	0,86	0,79	0,93
g-Nonalactone	1,20	1,29	1,94	3,03	1,31	2,04	2,05	4,09	2,17	3,15	5,95	6,06
m-Cresol	0,20	0,34	0,36	0,46	0,26	0,32	0,34	0,52	0,20	0,34	0,30	0,38
Ethyl cinnamate	1,07	1,03	1,61	3,44	4,05	4,64	2,38	4,52	2,33	2,03	1,87	1,93
g-Decalactone	0,41	0,34	0,37	0,46	0,31	0,30	0,51	0,55	0,41	0,48	0,80	0,68
Eugenol	0,14	0,18	0,15	0,22	0,17	0,21	0,20	0,30	0,13	0,19	0,20	0,34
Ethylphenol	0,18	0,37	0,71	0,27	0,18	0,29	0,27	0,45	0,16	0,23	0,23	0,23
4-Vinylguaicol	2635	3834	4277	11227	3456	3784	5758	15435	2256	3049	4297	4855
Massoia lactone	17,3	9,93	10,7	37,9	6,90	10,9	25,8	29,8	15,7	9,93	41,7	61,2
Syringol	92,8	63,0	118	164	189	126	56,7	122	98,1	129	92,8	133
trans-Isoeugenol	0,32	0,49	0,79	0,70	0,28	0,30	0,51	0,64	0,26	0,32	0,31	0,68
4-Vinylphenol	191	247	389	777	359	346	631	1170	130	289	279	269
Methoxyeugenol	0,77	2,16	4,48	16,6	1,57	6,68	4,00	23,0	2,31	4,30	2,50	8,72
Vanillin	85,7	86,6	122	256	211	181	94,5	281	119	102	155	375
Acetovanillone	24,8	34,4	29,5	48,2	34,0	39,1	23,9	51,6	15,4	19,8	30,6	46,5
Syringaldehyde	98,6	114,0	183	378	355	197	116	278	217	129	191	417

Tabla4. Valores de concentración medios, diferencia en [HIST-TEST], valores de desviación estándar (SD), valores T y p y escala de color de la %Dif.. **VENDIMIA 2023**.

	Media Testigos	Media Históricas	[Hist-Test]	Dif %	SD_T	SD_H	tEXP	P
R-limonene	174	151	-22,59	-13,9%	225,5	202,3	0,18	0,859
1,8-Cineole	0,94	0,78	-0,15	-17,8%	0,31	0,31	0,85	0,416
Linalool oxide (isomeros juntos)	4,15	2,43	-1,72	-52,2%	2,04	0,86	1,90	0,087
Dihydromyrcenol	2,14	1,74	-0,41	-20,9%	0,93	0,77	0,82	0,429
Vitispirane A and B (area relativa)	0,33	0,16	-0,17	-69,8%	0,28	0,08	1,42	0,185
Linalool	17,4	11,0	-6,32	-44,5%	9,08	4,87	1,50	0,164
Riesling Acetal (area relativa)	0,26	0,15	-0,11	-55,7%	0,16	0,05	1,66	0,129
a-Terpineol	18,7	10,1	-8,65	-60,1%	11,25	4,94	1,73	0,115
TDN	7,35	3,83	-3,53	-63,1%	6,11	2,58	1,30	0,222
b-Citronellol	2,85	2,93	0,09	3,0%	0,96	0,46	0,20	0,848
Nerol	2,51	1,69	-0,82	-39,3%	1,28	0,64	1,41	0,188
b-Damascenone	11,4	11,5	0,05	0,4%	4,10	3,81	0,02	0,984
b-Phenylethyl acetate	2,59	2,45	-0,14	-5,5%	0,87	0,87	0,27	0,789
Geraniol	15,3	10,8	-4,54	-34,8%	7,07	4,37	1,34	0,210
Guaiacol	11,0	18,2	7,13	48,8%	3,55	6,59	2,33	0,042
b-Ionone	0,58	0,50	-0,08	-14,7%	0,24	0,23	0,58	0,573
g-Octalactone	0,79	0,76	-0,03	-3,8%	0,46	0,39	0,12	0,907
o-Cresol	0,83	0,84	0,01	1,1%	0,21	0,09	0,10	0,922
g-Nonalactone	2,44	3,28	0,84	29,4%	1,77	1,67	0,85	0,418
m-Cresol	0,27	0,39	0,12	35,5%	0,07	0,08	2,78	0,020
Ethyl cinnamate	2,22	2,93	0,71	27,7%	1,02	1,49	0,97	0,357
g-Decalactone	0,47	0,47	0,00	-0,1%	0,17	0,14	0,01	0,995
Eugenol	0,16	0,24	0,08	37,8%	0,03	0,06	2,73	0,021
Ethylphenol	0,29	0,31	0,02	6,6%	0,21	0,09	0,21	0,838
4-Vinylguaicol	3780	7031	3251	60,1%	1278	5091	1,52	0,160
Massoia lactone	19,7	26,6	6,95	30,0%	12,55	20,7	0,70	0,498
Syringol	108	123	14,7	12,8%	44,45	32,9	0,65	0,529
trans-Isoeugenol	0,41	0,52	0,11	23,8%	0,20	0,18	1,00	0,340
4-Vinylphenol	330	516	186	44,1%	177	377	1,10	0,298
Methoxyeugenol	2,61	10,23	7,63	118,8%	1,41	7,97	2,31	0,044
Vanillin	131	214	82,4	47,8%	45,9	111	1,67	0,125
Acetovanillone	26,4	39,9	13,6	40,9%	6,54	11,7	2,48	0,033
Syringaldehyde	193	252	58,9	26,4%	91,6	127	0,92	0,379

Como puede verse, las diferencias significativas (valores p<0.05, marcados en rojo con fondo rojo) afectan a los componentes del grupo de los fenoles volátiles: guaiacol, m-cresol, eugenol, metoxieugenol y además a la acetovanillona.

El año pasado, y como se ve en la **Tabla 5**, las diferencias significativas afectaban también a los componentes del grupo de los fenoles volátiles: guaiacol, metoxieugenol y a la suma de todos los fenoles volátiles.

Tabla5. Valores de concentración medios, diferencia en [HIST-TEST], valores de desviación estándar (SD), valores T y p y escala de color de la %Dif. **VENDIMIA 2022** .

	Media Testigos	Media Históricas	[Hist-Testigo]	\$D_T	SD_H	Diferencia %	tEXP	p
R-limonene	6,50	6,31	-0,19	2,01	2,35	-2,9%	0,15	0,886
1,8-Cineole	0,70	0,73	0,03	0,13	0,25	4,3%	0,26	0,798
Linalool oxide (isomeros juntos)	1,43	1,49	0,06	0,27	0,27	4,0%	0,38	0,714
Dihydro myrcenol	1,44	1,40	-0,04	0,36	0,55	-2,6%	0,14	0,894
Vitispirane A and B (area relativa)	18,19	17,77	-0,42	4,24	6,43	-2,3%	0,13	0,896
Linalool	4,06	3,94	-0,12	1,65	1,27	-2,9%	0,14	0,895
Riesling Acetal (area relativa)	4,62	4,45	-0,17	0,96	1,45	-3,7%	0,24	0,819
a-Terpineol	3,60	3,75	0,16	1,11	1,74	4,2%	0,18	0,857
TDN	6,82	6,23	-0,59	1,44	2,26	-9,0%	0,54	0,604
b-Citronellol	0,40	0,41	0,01	0,10	0,12	2,8%	0,17	0,867
b-Damascenone	2,11	1,88	-0,23	0,38	0,70	-11,6%	0,71	0,494
b-Phenylethyl acetate	2,83	2,60	-0,23	0,52	0,84	-8,5%	0,57	0,578
Geraniol	0,77	0,76	-0,01	0,36	0,26	-0,9%	0,04	0,969
Guaiacol	2,57	4,07	1,50	0,85	0,31	45,3%	4,05	0,002
b-lonone	0,19	0,20	0,01	0,05	0,06	3,8%	0,23	0,821
o-Cresol	0,22	0,30	0,08	0,10	0,10	30,7%	1,39	0,196
g-Nonalactone	0,68	0,85	0,16	0,33	0,33	21,4%	0,86	0,411
m-Cresol	5,95	8,27	2,32	1,35	3,66	32,6%	1,46	0,175
4-Vinylguaicol	41,66	49,52	7,86	5,13	11,91	17,2%	1,48	0,169
Massoia lactone								
Syringol	66,75	68,42	1,67	8,77	17,68	2,5%	0,21	0,840
trans-Isoeugenol	0,12	0,13	0,01	0,01	0,03	8,5%	0,80	0,443
4-Vinylphenol	57,29	75,49	18,21	15,95	43,21	27,4%	0,97	0,356
Methoxy eugenol	0,43	0,63	0,20	0,07	0,19	37,7%	2,46	0,034
Vanillin	61,68	76,77	15,08	10,18	23,53	21,8%	1,44	0,180
Acetovanillone	13,78	16,66	2,88	3,66	4,28	18,9%	1,25	0,239
Syring aldehyde	1627,30	1632,34	5,04	443,23	939,53	0,3%	0,01	0,991
3-Mercapto hexyl acetate	0,20	0,17	-0,03	0,06	0,08	-15,0%	0,71	0,494
Benzyl mercaptane	0,32	0,25	-0,07	0,06	0,09	-24,1%	1,49	0,167
2-Furfurylthiol	0,98	1,04	0,05	0,17	0,50	5,2%	0,24	0,812
3-Mercapto hexanol	1381,07	1277,82	-103,26	355,01	416,48	-7,8%	0,46	0,654
4-Mercapto-4-methyl-2-pentanone	0,59	0,64	0,05	0,09	0,11	8,5%	0,91	0,385
suma fenoles	8,79	11,21	2,43	0,87	1,81	24,3%	2,96	0,014
suma terpenos	7,97	8,03	0,06	1,00	2,18	0,8%	0,06	0,952
suma norisoprenoides	5,11	4,89	-0,23	0,61	1,26	-4,6%	0,40	0,698
suma mercaptanos varietales	2,00	2,00	0,01	0,36	0,44	0,3%	0,03	0,977

Comentarios y conclusiones.

Los resultados reflejan que, en las condiciones estudiadas y para dos añadas consecutivas, las uvas procedentes de viñedos históricos presentan **contenidos en aromas varietales más diversos, más pesados y más extremos** que los encontrados en las uvas procedentes de viñedos equivalentes de menor edad.

De manera general, las diferencias se concentran en la familia de los fenoles volátiles varietales. Las uvas procedentes de viñedos más antiguos pueden producir niveles entre un 45% y un 49% significativamente más altos de guaiacol y entre un 38% y un 118% de metoxieugenol, en las dos añadas estudiadas.

Desde el punto de vista sensorial, estas diferencias indican que las parcelas históricas dan lugar a vinos de garnacha con estructuras aromáticas frutales y florales diferenciadas de los correspondientes testigos procedentes de uvas de viñas más jóvenes. Como notas comunes, los mayores niveles de componentes con aromas a **tostado y clavo**, harán que la fruta se perciba como más **fruta negra** que roja; pero según la procedencia se ha detectado que las uvas procedentes de parcelas más antiguas pueden además desarrollar aromas **más florales**, enriquecidos en terpenos y b-ionona, o más **frutales y especiados**, enriquecidos en b-damascenona y derivados vainillínicos.

La conclusión más clara del estudio es que se ha demostrado que la **edad del viñedo** afecta en <u>dos años consecutivos</u>, de manera significativa y positiva, a los niveles generales de uno de los 4 **grupos más relevantes de metabolitos secundarios de aromas varietales.** Tal y como ya también apuntamos el año pasado, dado que estos metabolitos aromáticos están desde el punto de vista bioquímico, emparentados con los polifenoles, cabe inferir que es muy probable que algunas de las subfamilias de polifenoles también venga afectada por la edad del viñedo.

Zaragoza, 02 de octubre de 2024

Laboratorio de Análisis de Aroma y Enología (LAAE) Universidad de Zaragoza